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CdTe and CdTe-based Cd1–xZnxTe (CZT) alloys are important semiconductor compounds that are
used in a variety of technologies including solar cells, radiation detectors, and medical imaging
devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-
scale defects that form during crystal growth and manufacturing processes. Molecular dynamics
simulations offer an effective approach to study the formation and interaction of atomic scale defects
in these crystals, and provide insight on how to minimize their concentrations. The success of such a
modeling effort relies on the accuracy and transferability of the underlying interatomic potential used
in simulations. Such a potential must not only predict a correct trend of structures and energies of
a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting
behavior and should be capable of simulating crystalline growth during vapor deposition as these
processes sample a variety of local configurations. In this paper, we perform a detailed evaluation
of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and
the other possessing the Tersoff form. We examine simulations of structures and the corresponding
energies of a variety of elemental and compound lattices, defects, and surfaces compared to those ob-
tained from ab initio calculations and experiments. We also perform melting temperature calculations
and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization
produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable
for defect studies. Origins of the problems of these potentials are discussed and insights leading to the
development of a more transferrable potential suitable for molecular dynamics simulations of defects
in CdTe crystals are provided. © 2011 American Institute of Physics. [doi:10.1063/1.3596746]

I. INTRODUCTION

CdTe and CdTe-based Cd1–xZnxTe (CZT) alloys have en-
gendered intensive research due to their numerous important
applications. Thin films of CdTe are commonly used in so-
lar cells1, 2 due to their impressive electronic properties (e.g.,
high solar energy absorption coefficient, optimal band gap for
photoelectric conversation under solar radiation3–5), ease of
manufacture, and low production cost as compared with other
photovoltaic materials.6, 7 CdTe and CZT have also been the
dominant semiconductors for radiation detection and medical
imaging applications.8–14 These materials have many attrac-
tive properties including high atomic numbers for efficient
radiation-atomic interactions, and ideal band gaps for both a
high electron-hole creation and a low leakage current. Despite
the successful uses of CdTe and CZT, the material properties
achieved today are still far from optimum. In the solar cell ap-
plication, for instance, the current record energy conversion
efficiency is only about 16% as compared with the theoretical
prediction of 29% .3, 15–17 The difference has been attributed to
various micro/nano scale charge-trapping defects in the mul-
tilayered films.5, 7, 15, 18–23 In the radiation detection applica-
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tion, property non-uniformity has been the limiting factor for
both device performance and material cost (arising from a low
yield of usable ingot portions).8 Micron-scale defects such
as grain boundaries and tellurium inclusions/precipitates have
been known to affect carrier transport and uniformity by cre-
ating non-uniform charge trapping and electric fields.8, 24, 25

Past efforts on minimizing these micron defects have not re-
solved the uniformity problem. Smaller scale defects such
as dislocations26 can also cause non-uniformity. Dislocations
and tellurium precipitates both were found to decorate grain
boundaries8 and hence dislocations can be the root cause for
non-uniformity by serving as the nucleation sites for tellurium
precipitates. Unfortunately, the small scale defects have not
been well studied in the past and were not considered in the
material optimization.

CdTe or CZT are both soft (possessing a low yield
strength) and brittle (possessing a low cleavage strength)
which facilitates the creation of defects during the growth
and manufacturing process.14, 27–35 It is therefore challenging
to control defect formation using the experimental trial-
and-error approach alone especially for nanoscale defects.
Theoretical understanding of the effects and formation
mechanisms of defects can play a critical role in material
improvement. Various simulation techniques can be used
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to study the problem, including molecular dynamics (MD)
(Refs. 36–38) and Monte Carlo (MC) methods,39, 40 where
energies and forces can be determined from either den-
sity functional theory (DFT) (Refs. 41–43) or empirically
constructed interatomic potentials.36–38 In particular, MD
with interatomic potentials provides an effective means to
study the atomic scale structures at a length scale chal-
lenging for treatment by DFT-based MD and a detail of
non-equilibrium conditions and structures unreachable by
interatomic potential-based MC. With atomic configurations
far from the equilibrium bulk lattice encountered during
defect evolution under thermomechanical loading conditions,
the key to having high fidelity MD simulations of defects is
the use of a highly transferrable interatomic potential. Such
a potential must not only capture a correct trend of structures
and energies for a variety of elemental and compound lattices,
defects, and surfaces, but also correctly reproduce the melting
behavior and crystalline growth during vapor deposition, as
these processes sample a variety of local configurations.

A literature survey indicates that there are two CdTe
interatomic potentials already developed, one40 is based upon
the Stillinger-Weber format44 (noted as SW potential), and
the other one36 is a Rockett modification36, 45 of the Tersoff
potential46 (noted as TR potential) (see Appendix A for their
formalisms). The objective of this paper is to assess the
applicability of these two potentials for MD studies of defect
interaction and defect formation under thermomechanical
conditions and identify a method to improve upon these
models. This is done by comparing simulations of a variety
of elemental and compound lattices, defects, and surfaces
performed using the two potentials against those from
experiments and/or ab initio calculations. The suitability of
the potentials for disturbed configurations is also tested using
melting temperature calculations and vapor deposition simu-
lations. Insights that lead to a better model are then discussed.

II. COHESIVE ENERGY AND ATOMIC VOLUME

A useful way to assess the transferability of a CdTe inter-
atomic potential is to calculate the atomic volume and cohe-
sive energy of various Cd, Te, and CdTe clusters and phases
with coordination from 1 to 12 and to compare these to the
corresponding data from experiments and density functional
theory (DFT) calculations. This is especially important in un-
derstanding Te precipitates. Studies have shown that the sec-
ondary Te structure depends on growth conditions and can
range from a high pressure rhombohedral phase,27 a normal
trigonal phase,28 an amorphous phase,28 an hcp representation
of the trigonal phase,29 and a monoclinic phase. After consid-
ering a larger structure basis based on our experiences,47 our
choice of clusters and crystal phases are as follows:

� For pure Cd, we study dimer (di), trimer (tri),
square (sq), tetrahedron (tetra), and four-atom-chain
(ch) clusters and diamond-cubic (dc), simple-cubic
(sc), body-centered-cubic (bcc), face-centered-cubic
(fcc), hexagonal-close-packed (hcp), graphite (gra),
and graphene (grap) lattices.

� For pure Te, we study the same cluster and lattice types
listed above for Cd, plus the γ -Se (A8) lattice.

� For the Cd-Te binary system, we study the zinc-
blende (zb), wurtzite (wz), NaCl (B1), CsCl (B2), and
binary-graphene (grap) lattices for the stoichiometric
compound CdTe, plus two non-stoichiometric trimers,
Cd2Te, and CdTe2.

Experiments indicated that equilibrium phases for Cd,
Te, and CdTe are hcp, A8, and zb (Ref. 48) with atomic vol-
umes of 21.46 Å3/atom, 33.76 Å3/atom, and 33.98 Å3/atom,
respectively. The experimental cohesive energies derived
from the thermochemical data49 are –1.133 eV/atom,
–2.168 eV/atom, and –2.178 eV/atom for the three equilib-
rium phases. DFT calculations are used to calculate struc-
tures and energies for non-equilibrium, metastable phases not
observed in experiments (see Appendix B). While DFT cal-
culates energy differences between different phases well, it
does not yield accurate absolute energies. Thus, the DFT ener-
gies should only be considered as a relative measure between
phases and trends.

Based on the CdTe Stillinger-Weber and Tersoff-Rockett
potentials, molecular statics (energy minimization) sim-
ulations were performed to calculate the relaxed struc-
tures and energies of the different phases. Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
(Ref. 50) was used for the energy minimizations. The simu-
lations used a Polak-Ribiere conjugate gradient method, with
a stopping energy tolerance of 10−12 eV, and a stopping force
tolerance of 10−14 eV/Å, and were performed under a zero
pressure condition using the method developed by Parrinello
and Rahman.51

A. Cohesive energy

The calculated cohesive energies using the two potentials
were determined using the molecular statics method. Figure 1
shows a comparison of the calculated data for selected
important crystalline structures with those obtained from

FIG. 1. Energies of various Cd, Te, and CdTe phases computed using DFT,
SW, and TR.
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DFT calculations and experiments.49 A sizeable discrepancy
between DFT and experimental values can be seen in the
cohesive energy of the Cd hcp structure. This energetic
difference arises from the lack of dispersion interactions in
conventional DFT functionals which, in the case of cohesive
energies, can play a large role in energetic stability.52, 53 The
incorporation of dispersion effects beyond the single-particle
DFT approach would require significant modifications to our
code (in addition to significant computational effort), and will
be addressed in future work.89 The energy trends of different
phases predicted by the SW and the TR potentials are both
substantially different from that determined by the DFT
method. Most seriously, both SW and TR potentials have a
dc lowest energy Cd structure, whereas DFT and experiments
show that the lowest energy phase should be hcp. This means
that the SW and TR cannot be used to model Cd. Similarly,
the SW and TR potentials incorrectly have a dc structure
and bcc structure as the lowest energy for Te, respectively.
DFT and experiments indicated that the A8 structure should
have the lowest energy. Although the cohesive energy of
the A8 Te structure predicted by the TR potential is not
significantly higher than that of the bcc Te structure, the
TR potential gives the worst energy trend across different
phases as it essentially predicted three “lowest” energy Te
phases of fcc, bcc, and A8 with energies significantly lower
than the corresponding phases calculated using the DFT
method. Hence, the SW and TR potentials are not suitable for
modeling Te. The observation that the SW and TR potentials
cannot model Cd and Te can be understood because many of
the potential parameters are set to those of Si as discussed in
Appendix A.

The SW and TR potentials were fit using CdTe zb data
with a cohesive energy of –2.06 eV/atom. In fact, the experi-
mental cohesive energy of zb CdTe is –2.178 eV/atom.54 But
of greater importance are the energy trends between struc-
tures. For the SW potential, the energy trend shown in Fig. 1,
while not ideal, has some similarities to that of DFT. Most
importantly, it does give the zb structure as the lowest en-
ergy phase. As a result, the SW potential at least allows MD
simulations of the zb CdTe structure. A serious problem is
seen for the TR potential, as it not only has a structure energy
trend significantly different from that of DFT, it also has NaCl
(B1) and CsCl (B2) (shown in Fig. 1) as lower energy struc-
tures relative to zb. This means that the TR potential may not
even permit stable MD simulations of the zb CdTe especially
under thermomechanical conditions where phase transforma-
tion may be triggered. Note that the problem was revealed
by exploring only a limited number of phases. A much more
stringent test is simulating vapor deposition where many lo-
cal configurations not represented by the phases explored here
will be encountered (see Sec. VII).

In addition to the cohesive energies for crystal structures,
the calculations of various clusters are compared to DFT and
experimental values, shown in Table I. Interestingly, both po-
tentials over predict (larger magnitude) the Cd cluster ener-
gies and under predict the Te cluster energies. Both potentials
also over predict the three CdTe cluster energies. These large
differences can greatly influence the thermodynamics of the
system.

TABLE I. Cd-Te cluster energies (eV).

Experiment DFT SW TR

Cd dimer –0.04a –0.06 –0.58 –0.72
Cd trimer . . . –0.21 –1.05 –1.00
Cd square . . . –0.24 –2.11 –2.07
Cd rhombus . . . –0.32 –2.11 –2.07
4 Cd linear chain . . . –0.20 –1.38 –1.93
Cd tetrahedron . . . –0.56 –1.53 –1.40
Te dimer –2.66b –3.43 –1.12 –1.20
Te trimer . . . –5.67 –2.29 –2.29
Te square . . . –7.63 –4.18 –4.00
Te rhombus . . . –7.63 –4.18 –4.00
4 Te linear chain . . . –7.05 –1.38 –1.93
Te tetrahedron . . . Unstable –3.46 –3.60
CdTe dimer . . . –0.17 –1.03 –1.14
TeCdTe trimer . . . –3.45 –2.09 –2.32
CdTeCd trimer . . . –1.53 –2.06 –2.29

aData from Barin et al. (Ref. 92).
bData from Viswanathan et al. (Ref. 93).

B. Atomic volumes and bond lengths

The atomic volumes calculated using the SW and TR
potentials are compared with the DFT calculations and the
experimental data in Fig. 2 for important structures. As for
energies, the trends between phases are a more important
measure than the actual volumes. The overall trend of the
atomic volumes of the two potentials roughly follows that of
DFT, but some exceptions occur. In particular, large jumps in
the volume trends which are either predicted by DFT and not
by the potentials or vice versa are highly undesirable. A more
suitable trend would have a potential that could be adjusted
according to the arrows shown in the Fig. 2.

Since atomic volumes are not well defined for the small
clusters, the bond lengths for the structures are compared in
Table II. The SW and TR potentials over estimate the bond
lengths for the Cd tetrahedron bond lengths by 7% and 4%,
respectively. The remaining Cd cluster bond lengths are all
underestimated by 3%–15% for the SW and 6%–17% for the

FIG. 2. Atomic volumes of different Cd, Te, and CdTe phases computed
using DFT, SW, and TR. Arrows indicate points that should be adjusted in
order to capture correct trends.
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TABLE II. Cd-Te cluster bond lengths (Å).

Experiment DFT SW TR

Cd dimer 4.07a 3.50 2.98 2.92
Cd trimer . . . 3.38 3.28 3.18
Cd square . . . 3.53 3.04 3.01
Cd rhombus . . . 3.51 3.04 3.01
4 Cd linear chainb . . . 3.44, 3.39 3.07, 3.25 2.94, 2.96
Cd tetrahedron . . . 3.22 3.44 3.33
Te dimer 2.56c 2.58 2.86 2.78
Te trimer . . . 2.76 3.11 3.01
Te square . . . 2.80 2.90 2.86
Te rhombus . . . 2.80 2.90 2.86
4 Te linear chainb . . . 2.60, 2.83 3.07, 3.25 2.94, 2.97
CdTe dimer . . . 2.57 2.82 2.77
TeCdTe trimerd . . . 4.12,2.57 3.12, 3.09 2.91, 3.01
CdTeCd trimerd . . . 2.82, 2.88 2.82, 4.60 2.77, 4.96

aData from Lukeš et al. (Ref. 94).
bFor the 4 member linear chains, the first value is the bond length between the outer
most atom and its neighbor. The second value is the bond length between the two inner
atoms.
cData from Hube et al. (Ref. 95).
dFor the ABA trimer, the first value is the AB bond length and the second value is the
AA bond length.

TR. In contrast to the Cd clusters, both potentials over pre-
dict all of the Te cluster bond lengths: SW 3%–18% and TR
2%–13%. The two potentials really do a reasonable job for
the Cd-Te dimer bond length with differences of 4% for SW
and 3% for TR. For the CdTeCd trimer, both potentials do
an excellent job reproducing the bond lengths between CdTe
∼ 0% (SW) and 2% (TR), but the distances between the two
Cd atoms are greatly over predicted 60% (SW) and 72% (TR).
For the TeCdTe trimer structures, the potentials under pre-
dicted the CdTe bond lengths by 24% (SW) and 30% (TR)
and over predicted the TeTe bond length by 20% (SW) and
17% (TR).

III. ELASTIC CONSTANTS

Elastic constants are important properties to capture in
the simulations as they affect the strain energy around de-
fects and dislocation properties. The elastic properties of the
CdTe zb as well as the bulk moduli for several of the el-
emental Cd and Te crystal structures have been calculated
using MD simulations. The elastic constants were deter-
mined from the second derivatives of the energy with re-
spect to strain ∂2 E/∂εi∂ε j , where E and εi (i = 1, 2, . . . ,
6) are, respectively, the energy and strain. The implementa-
tion of the method was verified as our SW calculations agree
with those reported by Wang et al.40 using an analytic tech-
nique for calculating elastic constants for a given potential.55

Table III compares the elastic constants of the zb CdTe struc-
ture calculated from the SW and the TR potentials with the
corresponding data obtained from DFT calculations and ex-
periments. In Table III, c0

44 and c44 represent the unrelaxed
(homogeneously sheared crystal) and relaxed (a crystal al-
lowed to relax between two sheared plates) shear modulus,
respectively. The TR potential captures the elastic constants
of the CdTe compound fairly well with only 5%–25% dif-

TABLE III. Elastic constants of zinc-blende CdTe (GPa).

ci j Expt. (300 K) DFT TR SW

c11 53.3a 53.2b 50.7 44.3
c12 36.5a 36.0 b 37.5 19.6
c44 20.4a . . . 15.2 18.0

c(0)
44 . . . 31.8 b 46.8 30.7

aData from Rowe et al. (Ref. 96).
bData from Agrawal et al. (Ref. 41).

ference from the experimental values. The SW potential pro-
duces somewhat larger errors of about 17%–46% from exper-
imental values.

The bulk moduli of a variety of metastable Cd and Te
phases have also been calculated. The bulk moduli for the
two potentials are compared with DFT calculations and the
available experimental data in Tables IV and V for the various
Cd and Te phases. For the higher atomic volume structures
(sc, dc, and gra), the moduli for the SW potential are, within
2%–8% for Cd and 15%–21% for Te, as compared to the TR
potential, within 10%–139% for Cd and 17%–94% for Te.
Yet for the low atomic volume structures (bcc, fcc, hcp, A8),
the SW potential has unreasonably large moduli, 251%–263%
larger for Cd and 295%–300% larger for Te, compared to the
TR potential, 56%–80% and 7%–15% larger for Cd and Te,
respectively. As will be discussed in more detail below, SW
is only applicable for open (dc) structures and hence its poor
prediction of elastic properties for closely packed structures
is not surprising. When TR is not well parameterized, it may
result in poor elastic properties especially since the Tersoff
functions have non-continuous second derivatives at atomic
spacings that may overlap with the second (or above) nearest
neighbors.56

IV. POINT DEFECT ENERGETICS

In addition to Te inclusions and precipitates, native point
defects such as vacancies, interstitials, and antisites (Cd
atoms on Te sites and vice versa) are often seen in CdTe crys-
tals. The primary native defects in CdTe compounds are Cd
interstitials under the Cd-rich condition, and Cd vacancies, Te
interstitials, and Te antisites30, 57 under the Te-rich conditions.
All of these defects ultimately affect charge transfer prop-
erties of the material. Thus, an important aspect of the MD
model is the capability to predict the presence and interac-
tions of native defects in the zb CdTe. Various types of defects

TABLE IV. Bulk moduli of various Cd phases (GPa). Experimental value
is in parentheses.

DFT TR SW

sc 44.4 40.0 41.4
dc 18.9 45.1 19.2
gra 22.7 40.2 20.8
bcc 33.8 60.8 119.1
fcc 42.8 69.2 155.5
hcp 44.3 (62.2a) 69.2 155.5

aData from Béré et al. (Ref. 97).
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TABLE V. Bulk moduli of various Te phases (GPa). Experimental value is
in parentheses.

DFT TR SW

sc 53.2 13.7 61.1
dc 27.4 22.8 31.7
gra 35.6 68.9 28.0
bcc 57.6 63.1 227.8
fcc 56.9 60.6 227.6
A8 51.6 (24a) 59.3 203.6

aData from Parthasarathy et al. (Ref. 98).

can be easily introduced in the computational crystal used
in molecular dynamics or molecular statics calculations. The
stoichiometry of the system containing the defects depends
on the environment and it does not necessarily equal the sto-
ichiometry of the perfect crystal. Following the methodology
of Zhang and Northrup,47, 58, 59 the defect energy � is calcu-
lated as a function of the chemical potential difference �μ as

� = E
′
D − (nCd − nTe) · �μ, (1)

where nCd and nTe are numbers of Cd and Te atoms in the
defective system, �μ is the chemical potential difference
characteristic of the environment, and E ′

D is the intrinsic
defect energy at stoichiometric condition. �μ is expressed as

�μ = (
μCd − μbulk

Cd

) − (
μTe − μbulk

Te

)
, (2)

where μCd and μTe are the chemical potentials of Cd and Te
in the CdTe compound, and μbulk

Cd and μbulk
Te are the chemical

potentials (approximated here as cohesive energies per
formula unit) for the lowest energy Cd and Te phases. �μ

satisfies the condition –�H f < �μ < �H f where �H f is
the heat of mixing.59 In general, �μ = 0, �μ > 0, and �μ <

0 mean stoichiometric, Cd-rich, and Te-rich conditions. In the
MD simulations performed here, �μ is left as an independent
adjustable variable for the Cd and Te-rich environments.

The intrinsic defect energy can be calculated as

E
′
D = ED − (nCd + nTe) · μbulk

CdTe

− (nCd − nTe) · (
μbulk

Cd − μbulk
Te

)
, (3)

where ED is the total energy of the system containing the de-
fect and μbulk

CdTe the chemical potential (approximated as the
cohesive energy) of the lowest energy CdTe phase.

The defects considered include Cd vacancy (VCd), Te va-
cancy (VTe), Cd at Te antisite (CdTe), Te at Cd antisite (TeCd),
Cd interstitial surrounded by the Cd tetrahedron shell (Cdi1),
Cd interstitial surrounded by the Te tetrahedron shell
(Cdi2), Te interstitial surrounded by the Cd tetrahedron shell
(Tei1), and Te interstitial surrounded by the Te tetrahedron
shell (Tei2). Molecular statics simulations were performed
to calculate the minimized total energies of the systems
containing the corresponding defects, ED , and the intrinsic
defect energies were calculated under stoichiometric condi-
tions (�μ = 0) for which Eq. (1) reduces to Eq. (3). Similar
calculations were performed using DFT with computational
details described in Appendix B. The results obtained from
the potentials and DFT are compared in Table VI.

TABLE VI. Defect energies for zinc-blende CdTe (eV). DFT values in-
clude results calculated here and results from Wei et al. (in parantheses) for
Ref. 33

DFT SW TR

Cd vacancy, VCd 2.20 (2.67) 2.60 2.43
Te vacancy, VT e 2.72 (3.24) 1.53 0.93
Cd antisite, CdT e 3.01 (3.92) 0.80 0.18
Te antisite, T eCd 3.16 (3.70) 0.74 1.19
Cd interstitial 1, Cdi1 1.98 (2.04) 4.27 1.36
Te interstitial 1, T ei1 3.52 (3.41) 2.60 0.55
Cd interstitial 2, Cdi2 2.14 (2.26) 3.76 0.61
Te interstitial 2, T ei2 3.91 (3.52) 3.57 1.28

Table VI reveals that the defect energies calculated by
the two potentials deviate from the DFT results quite sig-
nificantly. Most importantly, the SW potentials indicate that
under the stoichiometric condition, the CdTe and TeCd anti-
sites have very low energies (0.74–0.80 eV). Contrarily, DFT
determined that these two defects have high energies (3.01
–3.16 eV). Worse than the SW potential, the TR potential in-
dicated that the intrinsic defect energy for the CdTe antisite
is only 0.18 eV, further contradicting the DFT results. The
TR potentials also showed that the Tei1 and Cdi2 interstitials
have low defect energies (0.55–0.61 eV), whereas DFT re-
sults showed that these two defects have fairly high energies
(2.14–3.52 eV). Note that SW and TR results are all based
on incorrect lowest energy structures of the elemental phases.
This analysis suggests that the SW and the TR potentials do
not sufficiently capture the defect properties and should not
be used to study defects.

V. SURFACE RECONSTRUCTIONS

Simulations of mechanical processes, such as fracture,
and growth processes, such as vapor deposition, require accu-
rately reproducing surface structures and energies. The (001)
surface of the zb CdTe crystal has exhibited a variety of
surface reconstructions depending on the environment.60–62

Some possible surface reconstructions, as reported by Gundel
et al.43 are shown in Fig. 3. Using DFT simulations, Gundel
et al.43 predicted that for Te-rich environments, the Te (2×1)
coverage θ = 1.0 reconstruction was favorable, whereas for
Cd-rich environments, the Cd c(2×2) coverage θ = 0.5 is
the favorable reconstruction. Their simulation is consistent
with experiments where Tatarenko et al. reported a Te (2×1)
(Ref. 63) in Te-rich environments and Seehofer et al. reported
a Cd c(2×2) surface in Cd-rich environments.60

Following previous work,47, 64 the energies of different
surface reconstructions were calculated as a function of the
same chemical potential difference as defined in Eq. (2). All
of the 10 Cd-Te (001) surface reconstructions shown in Fig. 3
were simulated. The computational cell used in each sim-
ulation contained a block of zb CdTe crystal with ∼2300
–2500 atoms. Periodic boundary conditions were used in the x
and y directions and two parallel free surfaces (with the same
reconstructions) were created in the ± z directions. The two
surfaces were not perfectly symmetric as one of the free
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FIG. 3. Surface reconstructions for (100) zinc-blende CdTe (see Ref. 43).

surfaces was rotated 90◦ relative to the opposite face. The re-
sults are summarized in Figs. 4 and 5 for the SW and TR po-
tentials, respectively. Figure 4 indicates that within the possi-
ble range of chemical potential difference between –�H f and
�H f , the preferred surface for the SW potential is Te (2×1)
coverage θ = 1.0 in the Te-rich environments (�μ at the –
�H f end) and Cd (1×2) coverage θ = 1.0 in the Cd-rich
environments (�μ at the �H f end). Figure 5 indicates that
the TR potential, on the other hand, has Cd (1×2) coverage
θ = 1.0 and Cd c(2×2) coverage θ = 1.0 surfaces as the two
most favorable reconstructions under all chemical potential
conditions –�H f < �μ < �H f .

Figures 4 and 5 indicate that the energies of all the sur-
faces with the 0.5 coverage are independent of the chemical
potential. This is because the numbers of atoms of the two
species in the system are equal when the surface stoichiom-
etry is 50/50. DFT results from Gundel et al.43 showed the
Te 0.5 coverage surfaces have an energy ∼0.2 eV/(1×1 cell)

FIG. 4. Surface energies of (001) zinc-blende CdTe surfaces as a function of
chemical potential difference calculated by SW.

FIG. 5. Surface energies of (001) zinc-blend CdTe surfaces as a function of
chemical potential difference calculated by TR.

higher than the Cd 0.5 coverage surfaces. Contrarily, Figs. 4
and 5 indicate that the energies of surfaces with the 0.5 cov-
erage are indistinguishable. It can be seen from Fig. 3 that all
surfaces with the 0.5 coverage are bulk terminated. As a re-
sult, it is not surprising that potentials considering only the
nearest interactions cannot distinguish these surfaces. On the
other hand, if the surfaces are not bulk terminated but rather
the surface atoms are dimerized, the potentials will give dif-
ferent energies.

VI. MELTING TEMPERATURE

Reproducing the correct melting properties of a material
can serve as an important validation of an atomistic model be-
cause a variety of local configurations can be sampled during
a melting process. MD simulations were performed to cal-
culate the melting temperatures, and LAMMPS was used for
the simulations. The equations of motion were integrated us-
ing the Verlet integrators of Tuckerman et al.65 at a time step
of 1 fs. To determine the melting temperature, the technique
proposed by Morris et al.66 was used. This process involved
allowing one slab of zb CdTe crystal and one slab of liquid
CdTe to be in contact and reach an equilibrium temperature.
We began with a single crystalline zb CdTe crystal contain-
ing 7200 atoms constructed using the 0 K lattice parame-
ter. The simulations employed periodic boundary conditions
in all three coordinate directions. The crystalline half of the
block contained 3600 atoms whose positions were held fixed
while the temperature of the other 3600 atoms was increased
to 2700 K over a 0.1 ns period. The pressure was held at
1 atm while maintaining the desired temperature under NPT
(constant mass, pressure, and temperature) conditions using
a Nosè-Hoover thermostat/barostat65, 67 with a temperature
damping parameter of 10.0, a pressure damping parameter of
5.0, and a drag coefficient of 1.0. The constant pressure con-
dition ensured that the sample dimension could relax, thereby
removing any unrealistic stresses in the melt. After reaching
a constant temperature for 0.05 ns, the fixed crystal was re-
leased. Isenthalpic (NPH) dynamics were then performed for
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TABLE VII. Melting temperatures of zinc-blende CdTe(K).

Expt. 1365

SW 1360–1390
TR 700–800

0.2 ns to bring the two slabs into thermal equilibrium where
the system temperature was well converged. Another 0.05 ns
simulation was conducted, and the melting temperature was
calculated as the average temperature in the final 0.05 ns pe-
riod. The results obtained are shown in Table VII. The SW po-
tential has a melting temperature of 1360–1390 K, very close
to the experimental value of 1365 K,68 but the TR potential
has a much lower melting temperature of 700–800 K. The low
melting temperature of the TR potential is consistent with the
cohesive energy data shown in Fig. 1 which shows that the
zb CdTe is not even stable compared to CsCl and NaCl struc-
tures.

VII. VAPOR DEPOSITION SIMULATIONS

Simulating vapor deposition is another excellent test of
a potential. Beginning with a substrate of zb CdTe and ran-
domly dropping atoms onto the surface at elevated temper-
atures, a vapor deposition process would sample many lo-
cal configurations that can possibly form on the surface but
cannot be included in similar studies described in the previ-
ous sections. If a potential truly has the lowest energy for the
equilibrium zb CdTe and proper energy trend driving the evo-
lution of metastable configurations towards the equilibrium
structure, a crystalline growth of the lowest energy phase is
likely to be obtained in the simulations. On the other hand, if
a surface asperity has an incorrect low energy, it is likely to
be retained and trigger the growth of an amorphous structure.

To model the deposition we began with a 3.2 × 3.2 nm2

substrate with a thickness of 1.4 nm consisting of 1000 atoms.
The bottom 2 atomic layers of the substrate were held fixed,
3 layers of atoms above the fixed region were isothermally
controlled, and 3 layers of atoms at the surface were left free.
NVT dynamics were used to maintain the isothermal temper-
ature at 1000 K for SW and 400 K for TR. TR requires a
lower temperature because of the much lower melting tem-
perature for the potential. Adatoms with an initial incident
energy of 0.5 eV and an initial incident direction perpendic-
ular to the growth surface were placed at random locations
far above the substrate. The atom types were chosen such that
over time the composition would be statistically stoichiomet-
ric. An adatom injection frequency corresponding to a growth
rate of 0.5 nm/ns was used. The time step of the MD simula-
tions was 1 fs.

Figures 6(a) and 6(b) show, respectively, the SW and TR
simulated structures of the films after 3.3 ns of deposition.
The SW potential did simulate crystalline growth of the zb
structure. In contrast, the TR potential produced an amor-
phous structure. Performing deposition simulations at other
temperatures using the TR potential also resulted in the amor-
phous growth. Figure 6(b) also indicates that not only the de-

FIG. 6. Thin film structures after 3.3 ns deposition obtained from (a) SW
potential at 1000 K and (b) TR potential at 400 K. The light atoms (orange)
are Cd and the dark atoms (blue) are Te.

posited atoms formed the amorphous structure, but also the
non-fixed atoms in the initial zb structure transformed to the
amorphous structure. These findings are all consistent with
Fig. 1 that the TR potential does not give zb CdTe structure as
the lowest energy phase.

VIII. TOWARDS MORE ACCURATE MODELS

The above analysis indicates that for the CdTe inter-
atomic potentials currently available in the literature, the SW
parameterization has clear advantages over the TR param-
eterization. Most importantly, the SW parameterization has
the correct lowest energy, melting temperature and crystalline
growth of the ground state zb CdTe structure, none of which
could be captured by the TR parameterization. This means
that the SW parameterization can be used to simulate CdTe for
some specific properties. However, neither SW nor TR param-
eterizations result in a correct trend for energies and dimen-
sions of a variety of configurations. In particular, both result
in incorrect lowest energy elemental structures. Additionally,
they are not accurate in predicting defect and surface ener-
gies. Numerous methods can be implemented to develop a
more transferrable potential for MD simulations of defect in-
teraction and formation under thermomechanical conditions.
These are described here.

As described in Appendix A, not all the parameters in the
SW parameterization were optimized. At first sight, it appears
that the SW potential can be significantly improved if all the
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parameters are optimized. However, it should be noted that
the SW potential is empirically constructed for the dc or zb
structures. This can be seen from Eq. (A1), where the angular
term is essentially a parabolic energy penalty for any struc-
tures with bond angles deviating from the tetrahedral angles
of dc and zb structures. While this facilitates a lowest energy
dc or zb phase, it does not physically ensure the distribution
of bond length and energies of other phases. We can examine
this in more detail.

Consider a diamond-cubic or zinc-blend structure un-
der hydrostatic strain, the bond angles remain constant at the
tetrahedral angle and the angular term of Eq. (A1) diminishes.
This means that the SW potential reduces to a pair potential
model for a ground state diamond-cubic or zinc-blend struc-
ture under hydrostatic strain. Equation (A2) indicates that the
pair component of the SW potential essentially has four pa-
rameters p1 = ei j Ai j , p2 = Bi j , p3 = σi j , and p4 = ai jσi j .
However, only three of these four parameters are independent
due to the constraint on the relative hardness of the repulsive
interaction with that of the attractive interaction. This can be
seen more clearly using the general Lennard-Jones (LJ) and
Morse pair potentials which also have four parameters A, B,
α, and β. It is well known that two of the four parameters α

and β satisfy the relation α/β ∼ 2 for most materials (e.g.,
6–12 LJ) in order to give a reasonable relative hardness. In
general, the four parameters of the pair component of the SW
potential can be fully determined by four properties of a dc
or a zb structure: lattice constant, cohesive energy, bulk mod-
ulus, and relative hardness. Under that condition, the angular
term is required to fit many properties including other shear
moduli and melting temperature of the dc or zb structure, and
energies and dimensions of other lattices, defects, and sur-
face configurations, which is in general difficult. Note that the
SW potential does not have to be used for tetrahedral struc-
tures. For non-tetrahedral structures, the angular term does
not diminish and the simple function form is no longer an
advantage of the SW potential as compared to the Tersoff
potential.

While the SW potential is not fundamentally trans-
ferrable, it can be easily parameterized to ensure the tetrahe-
dral structure to have the lowest energy and the crystalline
growth of the tetrahedral structure during vapor deposition
simulations. It can be seen from Eqs. (A1) and (A3) that the
angular penalty term essentially scales with the parameter λi j

(assume λi j = λik = λ). As a result, SW potential always en-
sures the lowest energy and the crystalline growth of the tetra-
hedral structure when λ is above a critical value. Likewise,
the SW potential may fail to reproduce the lowest energy and
crystalline growth of the tetrahedral structure when λ is small.
To test how sensitively the SW potential depends on λ, we
performed MD simulations of vapor deposition of CdTe us-
ing a slightly reduced λ value of 21 (original value 25) and a
much larger value of 50. The results are shown, respectively,
in Figs. 7(a) and 7(b). Clearly, the deposited film degraded to
an amorphous structure even when λ is slightly reduced, but
continues to produce crystalline growth when doubled. Due to
the restriction of λ being constrained above a critical level, it
is more difficult for the SW potential to fit the property trend
for many stable and unstable configurations.

FIG. 7. Thin film structures after 3.3 ns deposition obtained from SW poten-
tial at 1000 K with (a) λ = 50 and (b) λ = 21. The light atoms (orange) are
Cd and the dark atoms (blue) are Te.

While our studies showed some problems of the TR CdTe
potential, this is likely due to the parameterization rather than
the potential format considering that Tersoff46 and Brenner69

types of potentials have been very successfully applied for
carbon nanotubes,70 SiC,71–73 GaAs,85 and GaN.86 In the
Tersoff energy expression equation (A4), the first term is a
sum of pairwise energies representing the core-core repulsion
between atoms. This is different from the SW potential where
the pairwise sum represents total interaction including both
repulsion and attraction. The second term in Eq. (A4) is a sum
of the product between the bond order and pairwise bond in-
tegral representing the bonding energy between atoms. Bond
order is defined as one-half the difference of the number of
bonding and antibonding electrons in the molecular orbitals
between adjacent atoms,74 and the bond integral is related to
the probability that an electron hops from one molecular or-
bital to another. Such a potential format can be strictly de-
rived from quantum mechanical theories75–83 and hence the
Tersoff potential can be highly transferrable if well parame-
terized. Unfortunately, there is no obvious approach to ensure
the lowest energy for the tetrahedral structure with the Tersoff
potential. To ensure a correct simulation of a tetrahedral struc-
ture and its crystalline growth, energies of a large number of
clusters, lattices, defects, and surfaces need to be specifically
fitted. Since the energy of the tetrahedral structure must be
lower than any other structure, it is also not clear which con-
figurations need to be included in the fitting. As a result, it is
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not surprising that parameterizations of the Tersoff potential
might result in amorphous film growth, as seen here. Nonethe-
less, well parameterized Tersoff potentials have been devel-
oped for a number of systems,84, 85 and have simulated crys-
talline growth for GaN and GaAs.86, 87 The Tersoff-Rockett
potential explored here only fit the Cd-Te parameters while
the Cd-Cd and Te-Te parameters were simply taken to be the
literature values of Si (See Appendix A). The TR potential can
be significantly improved if all the parameters are optimized.

To explore how the TR model can be improved in detail,
we consider structures with only the nearest neighbor inter-
actions. For such structures, all bonds are equivalent. From
Eq. (A4), we can write the bond energy Eb as a function of
bond length r as

Eb = φ (r ) +  · u (r ) . (4)

Note that for simplicity, we have combined the pair function
here so that fc (r ) · φ (r ) ⇒ φ (r ) and fc (r ) · u (r ) ⇒ u (r ).
When the structures are subject to hydrostatic strain, bond
angles remain constant. Equations (A5) and (A9)–(A11) in-
dicate that the bond order  would be a constant for a bond
length range r ≤ Rc − Dc. At the equilibrium bond length,
∂ Eb/∂r = 0, and Eq. (4) then gives

 = −φ′ (r )

u′ (r )
. (5)

Substituting Eq. (5) into Eq. (4), we have an expression for
equilibrium bond energy Eb,0 as a function of equilibrium
bond length r0:

Eb,0 = φ (r0) − φ′ (r0)

u′ (r0)
· u (r0) . (6)

Likewise, we can write the second derivative of the bond en-
ergy with respect to bond length using the equilibrium condi-
tion:

E
′′
b,0 = φ′′ (r0) − φ′ (r0)

u′ (r0)
· u′′ (r0) . (7)

Equations (6) and (7) are necessary conditions that any near-
est neighbor structure must satisfy. In practice, if the target
values of cohesive energies, lattice constants, and bulk mod-
uli of a variety of nearest neighbor structures (e.g., dimer, dc,
sc, fcc, hcp, NaCl, zb, etc.) are known from either experiments
or ab initio calculations, then these cohesive energies, lattice
constants, and bulk moduli can be converted to bond energies,
bond lengths, and second derivatives of bond energy, respec-
tively. The converted data points can then be fitted to Eqs. (6)
and (7). The ability to fit the lattice constants, cohesive en-
ergies, and bulk moduli for a variety of phases with two x-y
curves accounts for the transferability of the Tersoff potential.
Equations (6) and (7) suggest a two-step parameterization ap-
proach that can overcome the difficulties in parameterizing a
transferrable Tersoff potential. First, the pair potential param-
eters can be fully determined by fitting the energies, lattice
constants, and bulk moduli of a variety of nearest neighbor

phases using Eqs. (6) and (7). The second step involves de-
termining the bond order parameters by fitting the bond or-
ders of nearest neighbor structures to Eq. (5) and other prop-
erties, including those of other (non-nearest neighbor) struc-
tures. Such a strategy has been successfully applied in param-
eterizing GaN and GaAs potentials.84–87

Tersoff type of potentials can be viewed as the sim-
plest bond order potential (BOP) (Ref. 75) which incorporates
only the two-hop effect of electrons. It does neither distin-
guish between σ and π bonding nor address the valence ef-
fects. More accurate bond order potentials have been analyt-
ically derived75–83 from quantum mechanical theories under
the condition that the first two levels of the expanded Greens
function for the σand π bond orders are retained. The full
BOP formalism includes separate contributions from molec-
ular orbitals describing σand π type bonds80 and can be ap-
plied not only to open phase (half-full valence shell) mate-
rials but also to close-packed structures,81 and compounds.75

Recently, the BOP approach has been generalized to more ef-
fectively model sp-valent elements in material systems where
the degree of valence shell filling is incorporated.83 The com-
plete BOP incorporates 4-hop effects of electrons. While the
complete BOP can be in principle much more transferrable
than the Tersoff and Brenner types of potentials, its param-
eterization is also much more challenging. In a previous ef-
fort, Murdick et al. successfully parameterized an analytical
BOP for GaAs and demonstrated its transferability to a vari-
ety of phases and defect configurations.47 This GaAs BOP has
also been successfully applied in vapor deposition simulations
of zb GaAs and the many condensation mechanisms revealed
in the simulations are in good agreement with experiments.88

Currently, we have also developed a complete analytical BOP
for CdTe capable of Cd, Te, and CdTe crystalline growth.89

Although details about this potential will be given in a sepa-
rate paper, Fig. 8 shows an example of the CdTe growth simu-
lation using the new BOP. Similar to the SW potential exam-
ined here, the BOP correctly captures the crystalline growth
during vapor deposition of the zb CdTe, but is not limited

FIG. 8. Thin film structures after 3.3 ns deposition obtained from bond order
potential at 1000 K. The light atoms (orange) are Cd and the dark atoms
(blue) are Te.

Downloaded 23 Jun 2011 to 128.31.3.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



244703-10 Ward et al. J. Chem. Phys. 134, 244703 (2011)

by the structure restrictions associated with the SW potential.
Note that this BOP also has the correct lowest energy Cd, Te,
and CdTe phases.

IX. CONCLUSIONS

A thorough study has been conducted to evaluate the
CdTe interatomic potentials currently available in literature.
First, the structures and energies of a variety of elemental and
compound lattices, defects, and surfaces were calculated and
compared to those obtained from our ab initio calculations
and literature experimental results. This is complemented by
melting temperature calculations and vapor deposition simu-
lations. The following conclusions have been reached:

1. The existing Stillinger-Weber and Tersoff-Rockett pa-
rameterizations of the CdTe potential both have incorrect
lowest energy elemental Cd and Te structures. Hence,
they cannot be used for Cd or Te simulations. In addi-
tion, both parameterizations do not capture the lowest
energy surface reconstructions of the zinc-blende CdTe
compound.

2. The Stillinger-Weber parameterization of the CdTe po-
tential correctly reproduces the melting temperature, the
lowest energy, and the crystalline growth for the ground
state zinc-blende structure of CdTe, and hence can be
used to study CdTe for specific properties. Contrarily,
the Tersoff-Rockett parameterization of the CdTe poten-
tial predicts a wrong melting temperature and an amor-
phous growth of the zinc-blende CdTe, and a wrong B2
(CsCl) structure for CdTe. The Tersoff-Rockett param-
eterization, therefore, cannot be used for CdTe simula-
tions.

3. Due to its incorrect elemental structures and energies,
the Stillinger-Weber parameterization cannot correctly
capture heat of mixing and defect formation energies
(with respect to elemental phases) for the CdTe com-
pound. Hence, the potential should not be used to study
structure evolution, defect formation, and defect interac-
tion processes even for zinc-blende CdTe.

4. The Stillinger-Weber parameterization has reasonable
elastic properties for open structures like zinc-blende
CdTe, but significantly over predicts the elastic constants
for closely packed structures. Consequently, simulations
to study mechanical properties during high pressure and
high density should be avoided with the Stillinger-Weber
parameterization.

5. While the Stillinger-Weber parameterization can be im-
proved by optimizing all parameters, the transferability
of the potential is limited by the fundamental flaw of
the potential format. While we showed that the Tersoff-
Rockett parameterization is inferior to the Stillinger-
Weber parameterization, this is due to the parameteri-
zation rather than the potential format. We demonstrated
that a two-step parameterization can improve the trans-
ferability of the Tersoff-Rockett potential beyond that of
the Stillinger-Weber potential. Further, full bond-order
potentials are capable of resolving many of the issues

associated with SW and TR potentials as demonstrated
by the vapor deposition example.
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APPENDIX A: APPROXIMATIONS OF POTENTIAL
PARAMETERS

The two potentials examined here are the Stillinger-
Webber (SW) potential parameterized by Wang et al.40 and
the Tersoff-Rockett (TR) potential parameterized by Oh and
Grein.36 Both potentials involve some simplifications in their
parameterizations. These simplifications may explain some of
our results and are therefore discussed here.

The SW potential can be rewritten as

E = 1

2

∑
i

∑
j �=i

φi j (ri j ) + 1

2

∑
i

∑
j �=i

∑
k �= j �=i

ui j (ri j )

·uik(rik) ·
[

cos
(
θ j ik

) + 1

3

]2

, (A1)

where φi j (ri j ) and ui j (ri j ) are pairwise functions of atomic
spacing r with subscripts indicating either species or identifi-
cation of atoms, and θ j ik represents the bond angle at atom i
formed by the bond vectors from atom i to neighboring atoms
j and k. The pair functions φi j (ri j ) and ui j (ri j ) are written
respectively as

φi j (ri j )

=

⎧⎪⎨
⎪⎩

εi j Ai j

(
Bi j

r4
− 1

)
exp

(
σi j

ri j − ai jσi j

)
, ri j ≤ ai jσi j

0 , ri j > ai jσi j

,

(A2)

ui j (ri j ) =

⎧⎪⎨
⎪⎩

√
εi jλi j exp

(
γi jσi j

ri j − ai jσi j

)
, ri j ≤ ai jσi j

0 , ri j > ai jσi j

.

(A3)
Here, εi j , λi j , γi j , Ai j , Bi j , σi j , and ai j are pairwise param-
eters, and in particular, ai jσi j is the pairwise cutoff distance
of the potential. For the CdTe system, the seven parameters
εi j , λi j , γi j , Ai j , Bi j , σi j , and ai j in Eqs. (A1)–(A3) must
be defined for each of the three pairs i j = CdCd, TeTe,
and CdTe. Not all these parameters were optimized in Wang
et al.’s parameterization.40 For example, the parameters εi j ,
λi j , γi j , σi j , and ai j were chosen to be the same for all (CdCd,
TeTe, CdTe) pairs, and in particular γi j and ai j were simply
taken as the literature values for Si.44 This leaves Ai j and
Bi j as the only parameters to be optimized. It is thus not
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surprising that Wang et al.’s parameterization40 did not best
capture the elemental energy trends, defect energies, and
many of the elastic properties for high density structures.

The Tersoff-Rockett potential45 can be rewritten
as

E = 1

2

∑
i

∑
j �=i

[ fc,i j (ri j ) · φi j (ri j )+i j · fc,i j (ri j ) · ui j (ri j )],

(A4)
where φi j (ri j ) and ui j (ri j ) are pairwise repulsive and
attractive potential functions in the original Tersoff
potential,46 fc,i j (ri j ) is a cutoff function, and i j is the
bond order for the i j bond. The cutoff function is defined as

fc,i j (ri j )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, ri j ≤ Rc,i j − Dc,i j

1

2
− 1

2
cos

(
π

2

ri j −Rc,i j

Dc,i j

)
, Rc,i j −Dc,i j <r ≤ Rc,i j +Dc,i j

0, r > Rc,i j + Dc,i j

,

(A5)

where Rc,i j and Dc,i j are pairwise parameters and in particu-
lar, Rc,i j + Dc,i j is the cutoff distance of the i j pair functions.
The pair functions φi j (ri j ) and ui j (ri j ) are defined respectively
as

φi j (ri j ) =

⎧⎪⎨
⎪⎩

Ai j exp(−αi j ri j ), ri j ≤ Ra,i j − Da,i j

fa,i j (ri j )Ai j exp(−αi j ri j ), Ra,i j − Da,i j < ri j ≤ Ra,i j + Da,i j

0, ri j > Ra,i j + Da,i j

, (A6)

ui j (ri j ) =

⎧⎪⎨
⎪⎩

−Bi j exp(−βi j ri j ), ri j ≤ Ra,i j − Da,i j

−Bi j exp(−βi j ri j ) − [ fa,i j (ri j ) − 1]Ai j exp(−αi j ri j ), Ra,i j − Da,i j < ri j ≤ Ra,i j + Da,i j

−Bi j exp(−βi j ri j ) + Ai j exp(−αi j ri j ), ri j > Ra,i j + Da,i j

, (A7)

where Ai j , Bi j , αi j , βi j , Ra,i j , and Da,i j are all pairwise parameters, and fa,i j (ri j ) is another cutoff function similar to Eq. (A5)
but with a shorter cutoff distance Ra,i j + Da,i j :

fa,i j (ri j ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ri j ≤ Ra,i j − Da,i j

1

2
− 1

2
cos

(
π

2

ri j − Ra,i j

Da,i j

)
, Ra,i j − Da,i j < ri j ≤ Ra,i j + Da,i j

0, ri j > Ra,i j + Da,i j

. (A8)

It can be seen from the third splined function in
Eqs. (A6) and (A7) that the “repulsive” term φi j (ri j ) decays
to zero and the bond order modified “attractive” term ui j (ri j )
evolves to a full interaction potential (i.e., including both re-
pulsion and interaction) over the atomic spacing range be-
tween Ra,i j − Da,i j and Ra,i j + Da,i j . This is different from
the original Tersoff potential where φi j (ri j ) always represents
a positive repulsive energy, ui j (ri j ) always represents an at-
tractive function, and the bond order always modifies only the
attractive function.

The bond order is calculated as

i j = (1 + η
ni j

i j ζ
ni j

i j )
− 1

2ni j , (A9)

where ni j and ηi j are pairwise parameters and the local vari-
able ζi j is expressed as

ζi j =
∑

k �=i �= j

fc,ik(rik)gik(θ j ik) exp[λmik
ik (ri j − rik)mik ],

(A10)

where λik and mik are pairwise parameters, and the angular
function gik(θ j ik) is written as

gik(θ j ik) = γik

[
1 + c2

ik

d2
ik

− c2
ik

d2 + (hik − cos θ j ik)2

]
. (A11)

Here, γik , cik , dik , and hik are four additional pairwise param-
eters.

The Tersoff-Rockett CdTe potential has 16 parameters
Ai j , Bi j , αi j , βi j , ni j ηi j , λik , mik , γik , cik , dik , hik , Ra,i j ,
Da,i j , Rc,i j , and Dc,i j for each of the three pairs CdCd, TeTe,
and CdTe. In the parameterization by Oh and Grein,36 not all
these parameters are optimized for CdTe. In particular, the
parameters ni j , ηi j , λik , mik , γik , cik , dik , hik are all taken
from the literature values of Si.46 This lack of careful param-
eterization accounts for our observation that Oh and Grein’s
parameterization36 cannot capture the melting temperature or
crystalline growth of CdTe zb or any significant properties of
the elemental phases.
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APPENDIX B: DENSITY FUNCTIONAL THEORY
CALCULATIONS

We performed electronic structure calculations within the
generalized gradient approximation (GGA) using projector
augmented wave (PAW) pseudopotentials as implemented in
the Vienna Ab initio Simulation Package (VASP).90 All cal-
culations utilized the non-empirical PBE GGA functional91

and were carried out with unconstrained, spin-polarized con-
ditions. This is necessary for calculating CdTe cohesive en-
ergies since the ground state of the Te atom is an electronic
triplet state. For the cohesive energy calculations, the cutoff
energy for the plane wave basis set was set to 500 eV, and
the Brillouin zone was sampled using a dense 10 × 10 × 10
Gamma-centered Monkhorst-Pack grid. Defect energy calcu-
lations required the use of very large 3 × 3 × 3 supercells
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utilized. In our DFT calculations, both the atomic positions
and cell parameters in all the systems were fully relaxed.
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